超级电容的特性和电池相比有很多不同。主要的区别在下面的表中列出。电池比相同尺寸的超级电容储存更多的电能,但是在很多功率决定尺寸的储能设备的应用中,超级电容或许是最好的解决方案。
1.超级电容可以传送频繁脉冲的能量而没有任何有害效应,而许多电池都会在频繁的大功率脉冲工况下减少寿命。
2.超级电容能在相当短的时间内完成充电,而快速充电常常会损坏电池。
3.超级电容的循环周期是数万次的,而电池的寿命通常是几百次到1000、2000次。
4.基于低内阻的超级电容比电池效率更高;在实际应用中超级电容84%~95%的转换效率比多数电池低于70%的平均效率高出许多。
5.超级电容能在其许用电压范围中的任何电压值下充电,并且能够完全放电。这就允许在总线电压控制算法中更自由的设计。而电池过放电也是会损坏的。
6.计算超级电容中的储能值只需要知道电压和电容值。而超级电容的电容值可以通过测量电流和电压的变化值实时的计算出。而正确的得到电池的储能值需要经过多重复杂的计算,电池的容量通常也是未知的,而且实时地测算也是很困难的。
7.超级电容有更宽的工作温度范围,甚至可以在低至-40℃的温度下正常工作。而多数电池在温度低至-10℃时就不能工作。
8.超级电容通过极化高比表面积电极中的电解质工作,电解质、电极和隔离层材料的特性决定了超级电容的电容量性能。高比表面积的电极和小的带电离子决定了高的电容量;而高效的电解质、隔离层和材料,以及工艺设计决定了低的阻抗。
因为超级电容的能量储存不依赖化学反应,所以它和电池有着根本上的区别。
市场前景及应用
在设计一个系统时很自然想到的是形状,系统主要的能源储备应当能满足平均耐久要求和相对的瞬时峰值功率要求。然而为了满足这样的峰值功率是不经济且不实用的。系统通过能够储备的电能得到显著改善,当需要高功率时从主要能量源获取然后在控制下发射高压脉冲传输。此时,超级电容为短时所需功率和额定功率不匹配时提供一个简单,可靠的缓冲。这个功能减小了系统的形状和成本并改善了系统的性能和可靠性。
实例应用
超级电容有两个主要用途。第一个是在主能源不足时作为临时补充能源和额外的短时功能能源。这里当超级电容作为主要能量供给装置时,超级电容已经成为相对于电池的另一个选择,同时还有当主动力失效时的后备能源作用。
超级电容的第二个作用是峰值供能。这种情况下超级电容不仅可以单独在需要高功率传送的系统使用,而且还能在一些不仅需要持续功率放电功能也需要高载荷脉冲功率的系统中作为电池的后续能源使用。这里超级电容起到了高功率传输时对电池的缓解作用,从而增加了电池的使用寿命同时缩小了电池的尺寸。
尽管现在电池作为主要能量源和能量存储/峰值功率传输设备得到普遍应用,但是超级电容正成为能量存储和高功率传输设备而被逐渐采用。
事实上,任何应用场合都需要电能的存储和快速的充放电功能这就是超级电容的市场潜力。